

The WalkScore Library

(Unofficial) Python Bindings for the WalkScore API

Version Compatability

The WalkScore Library is designed to be compatible with:

	Python 3.6 or higher

	Branch

	Unit Tests

	latest [https://github.com/insightindustry/walkscore-api/tree/master]

	[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=latest]

	v.1.0 [https://github.com/insightindustry/walkscore-api/tree/v.1.0.1]

	[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=v.1.0.1]

	develop [https://github.com/insightindustry/walkscore-api/tree/develop]

	[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=develop]

The WalkScore Library is a Python library that provides Python bindings for the
WalkScore API [https://www.walkscore.com/]. It enables you to retrieve
WalkScores, TransitScores, and
BikeScores from the API within your Python code.

Warning

The WalkScore Library is completely unaffiliated with
WalkScore [http://www.walkscore.com]. It is entirely unofficial and was
developed based on publicly available documentation of the WalkScore APIs
published to the WalkScore website. Use of WalkScore is subject to WalkScore’s
licenses and terms of service, and this library is not endorsed by WalkScore
or any affiliates thereof.

Contents

	The WalkScore Library

	Installation

	Hello, World and Basic Usage

	Questions and Issues

	Contributing

	Testing

	License

	Indices and tables

Installation

To install WalkScore, just execute:

$ pip install walkscore-api

Dependencies

	Validator-Collection v1.3.0 [https://github.com/insightindustry/validator-collection] or higher

	Backoff-Utils v.1.0.0 [https://github.com/insightindustry/backoff-utils] or higher

Key WalkScore Features

	Python representation of WalkScores,
TransitScores, and BikeScores

	Easy serialization and deserialization of API responses to Python objects,
dict [https://docs.python.org/3.7/library/stdtypes.html#dict] objects or JSON

	Built-in back-off/retry logic if the WalkScore API is unstable at any moment
in time

	Robust error handling to surface meaningful information to help you debug your
code.

Hello, World and Basic Usage

1. Import the WalkScore API

from walkscore import WalkScoreAPI

2. Initialize the API

You can either use a single object to communicate with all of the available
WalkScore APIs, or initialize a single object for each API:

api_key = 'YOUR API KEY GOES HERE'

score_api = WalkScoreAPI(api_key = api_key)

3. Retrieve a Score

address = '123 Anyplace St Anywhere, AK 12345'

result = score_api.get_score(longitude = 123.45, latitude = 54.321, address = address)

the WalkScore for the location
result.walk_score

the TransitScore for the location
result.transit_score

the BikeScore for the location
result.bike_score

Questions and Issues

You can ask questions and report issues on the project’s
Github Issues Page [https://github.com/insightindustry/walkscore-api/issues]

Contributing

We welcome contributions and pull requests! For more information, please see the
Contributor Guide

Testing

We use TravisCI [http://travisci.org] for our build automation and
ReadTheDocs [https://readthedocs.org] for our documentation.

Detailed information about our test suite and how to run tests locally can be
found in our Testing Reference.

License

WalkScore is made available under an MIT License.

Indices and tables

	Index

	Module Index

	Search Page

Quickstart: Patterns and Best Practices

	Installation

	Initializing the API

	Configuring the HTTP Client

	Subclassing the Client

	Configuring a Proxy

	Configuring the Maximum Number of Retries

	Getting Scores

	Working with Scores

Installation

To install WalkScore, just execute:

$ pip install walkscore-api

Initializing the API

To initialize the WalkScoreAPI object all you
need to do is instantiate it:

from walkscore import WalkScoreAPI

supplying an API key
walkscore = WalkScoreAPI(api_key = 'MY API KEY GOES HERE')

using an API key in the "WALKSCORE_API_KEY" environment variables
walkscore = WalkScoreAPI()

Configuring the HTTP Client

You can heavily customize the HTTP client used by the WalkScore Library. By
default, the library will look for HTTP libraries in the following order:

	urlfetch [https://pypi.org/project/urlfetch/]

	requests [https://pypi.org/project/requests/2.7.0/]

	pycurl [http://pycurl.io/]

	urllib (Python standard library)

Tip

You can also override the HTTP client by subclassing the
HTTPClient class.

There are three ways to customize / configure the HTTP client:

	Subclass the HTTPClient class.

	Supply a proxy URL.

	Configure the maximum number of retries.

Subclassing the Client

from walkscore import WalkScoreAPI

from my_custom_client import MyCustomHTTPClient

walkscore = WalkScoreAPI(http_client = MyCustomHTTPClient)

Configuring a Proxy

from walkscore import WalkScoreAPI

walkscore = WalkScoreAPI(proxy = 'http://www.some-proxy-url')

Configuring the Maximum Number of Retries

If the WalkScore Library is unable to get a response from the WalkScore API, it
will automatically apply an exponential backoff/retry strategy. However, you can
configure the maximum number of retries that it attempts. This can be configured
in two ways:

	By setting the BACKOFF_DEFAULT_TRIES environment variable.

	By passing the maximum number of retries in the max_retries argument:

from walkscore import WalkScoreAPI

walkscore = WalkScoreAPI(max_retries = 5)

Getting Scores

To retrieve scores, all you need to do is to call the
get_score() method on the initialized API:

from walkscore import WalkScoreAPI

walkscore = WalkScoreAPI(api_key = 'MY API KEY GOES HERE')

result = walkscore.get_score(latitude = 123.45, longitude = 54.321)

Note

In order to retrieve a score from the API, you must supply the latitude and
longitude of the point you are looking for. The WalkScore API does not support
geocoding based on addresses, although an address can provide more precise
results if you supply it as well.

Tip

In order to get better performance out of the underlying WalkScore API, you may
want to suppress the calculation / retrieval of
TransitScores and/or BikeScores if
you don’t need them. To do that, all you need to do is pass the appropriate
arguments into the get_score() method:

result = walkscore.get_score(latitude = 123.45,
 longitude = 54.321,
 return_transit_score = False,
 return_bike_score = False)

The results returned by the get_score() method
are always LocationScore instances.

Working with Scores

When the WalkScore Library has retrieved a score for a given set of coordinates,
you can work with it as any other Python object. See the LocationScore
reference documentation for more insight into its properties.

However, there are a number of key serialization / deserialization methods that
you may find useful:

	.to_json() which returns a JSON representation
of the location score, either normalized to a cleaner/more consistent structure
preferred by the WalkScore Library or mirroring the WalkScore API’s JSON
structure

	.from_json() which returns a
LocationScore instance generated from a JSON string

	.to_dict() which returns a
dict [https://docs.python.org/3.7/library/stdtypes.html#dict] representation fo the location score, either
normalized to a cleaner/more consistent structure preferred by the WalkScore
Library or mirroring the WalkScore API’s JSON structure

	.from_dict() which returns a
LocationScore instance generated from a
dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

API Reference

	WalkScoreAPI

	LocationScore

	HTTPClient

WalkScoreAPI

	
class WalkScoreAPI(api_key=None, http_client=None, proxy=None, max_retries=None)

	The Python object which exposes the WalkScore API’s functionality.

	Parameters

	
	api_key (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – The API key provided by WalkScore used to authenticate
your application. If None [https://docs.python.org/3.7/library/constants.html#None] or not specified will
default to the WALKSCORE_API_KEY environment variable if present,
and None [https://docs.python.org/3.7/library/constants.html#None] if not.

	http_client (HTTPClient) – The HTTP client instance to use for the execution of requests.
If not overridden, will default to
urlfetch [https://github.com/ifduyue/urlfetch],
requests [https://github.com/kennethreitz/requests],
pycurl [https://github.com/pycurl/pycurl],
urllib2 in order based on whether they are available
in the environment.

Tip

You can override the HTTP client by supplying a
HTTPClient instance to the method.

	proxy (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – The URL to use as an HTTP proxy. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

	max_retries (int [https://docs.python.org/3.7/library/functions.html#int]) – Determines the maximum number of HTTP request attempts to
make on network failure before giving up. If not specified, defaults to
environment variable BACKOFF_DEFAULT_TRIES or 3 if not available.

	
get_score(latitude, longitude, address=None, return_transit_score=True, return_bike_score=True, max_retries=None)

	Retrieve the WalkScore, TransitScore, and/or
BikeScore for a given location from the WalkScore API.

	Parameters

	
	latitude (numeric) – The latitude of the location whose score(s) should
be retrieved.

	longitude (numeric) – The longitude of the location whose score(s) should
be retrieved.

	address (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – The address whose score(s) should be retrieved.
Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	return_transit_score (bool [https://docs.python.org/3.7/library/functions.html#bool]) – If True, will
return the location’s TransitScore. Defaults to
True.

	return_bike_score (bool [https://docs.python.org/3.7/library/functions.html#bool]) – If True, will
return the location’s BikeScore. Defaults to
True.

	max_retries (None [https://docs.python.org/3.7/library/constants.html#None] / int [https://docs.python.org/3.7/library/functions.html#int]) – The maximum number of retries to attempt if the
WalkScore API times out or otherwise fails to return a response.
If None [https://docs.python.org/3.7/library/constants.html#None], will apply the default the configured
when initializing the WalkScore API object. To suppress all retries,
set to 0. Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	Returns

	The location’s WalkScore, TransitScore,
and BikeScore with meta-data.

	Return type

	LocationScore

	Raises

	
	AuthenticationError – if the API key is invalid

	ScoreInProgressError – if the score is being calculated and is not
currently available

	WalkScoreError – if an internal WalkScore API error occurred

	QuotaError – if your daily quota has been exceeded

	BlockedIPError – if your IP address has been blocked

	InvalidCoordinatesError – if your latitude/longitude coordinates
are not valid

	
property api_key

	The API key used to sign requests made against the API.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]

	
property http_client

	The object instance to use as the HTTP client to make HTTP requests against
the WalkScore API.

	Return type

	HTTPClient

	
property max_retries

	The number of attempts to make on network connectivity-related API failures.

	Return type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
property proxy

	The URL to use as a proxy for requests made to the WalkScore API.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]

LocationScore

	
class LocationScore(address=None, original_latitude=None, original_longitude=None, status=None, walk_score=None, walk_description=None, walk_updated=None, transit_score=None, transit_description=None, transit_summary=None, bike_score=None, bike_description=None, logo_url=None, more_info_icon=None, more_info_link=None, help_link=None, snapped_latitude=None, snapped_longitude=None, property_page_link=None)

	Object representation of a location’s scoring data returned from the
WalkScore API.

	Parameters

	
	address (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – The address originally supplied to the WalkScore API.
Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	original_latitude (numeric / None [https://docs.python.org/3.7/library/constants.html#None]) – The latitude value originally supplied to the
WalkScore API. Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	original_longitude (numeric / None [https://docs.python.org/3.7/library/constants.html#None]) – The longitude value originally supplied to the
WalkScore API. Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	status (int [https://docs.python.org/3.7/library/functions.html#int] / None [https://docs.python.org/3.7/library/constants.html#None]) – The status returned from the WalkScore API. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

	walk_score (int [https://docs.python.org/3.7/library/functions.html#int] / None [https://docs.python.org/3.7/library/constants.html#None]) – The WalkScore for the location. Deafults to
None [https://docs.python.org/3.7/library/constants.html#None]

	walk_description (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – An English characterization of the
WalkScore, e.g. “Somewhat Walkable”. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

	walk_updated (datetime [https://docs.python.org/3.7/library/datetime.html#datetime.datetime] / None [https://docs.python.org/3.7/library/constants.html#None]) – The timestamp when the WalkScore was
calculated. Defaults to None [https://docs.python.org/3.7/library/constants.html#None]

	transit_score (int [https://docs.python.org/3.7/library/functions.html#int] / None [https://docs.python.org/3.7/library/constants.html#None]) – The TransitScore for the location. Deafults to
None [https://docs.python.org/3.7/library/constants.html#None]

	transit_description (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/stdtypes.html#str]) – An English characterization of the
TransitScore, e.g. “Rider’s Paradise”. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

	transit_summary (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – Notes on the transit options accessible from the
location. Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	bike_score (int [https://docs.python.org/3.7/library/functions.html#int] / None [https://docs.python.org/3.7/library/constants.html#None]) – The BikeScore for the location. Deafults to
None [https://docs.python.org/3.7/library/constants.html#None]

	bike_description (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – An English characterization of the BikeScore,
e.g. “Very Bikeable”. Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	logo_url (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – The URL of the WalkScore logo. Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	more_info_icon (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – The URL to the icon to use when linking to more
information. Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	more_info_link (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – The URL to link to when providing more information.
Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	help_link (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – A link to the “How Walk Score Works” page. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

	snapped_latitude (numeric / None [https://docs.python.org/3.7/library/constants.html#None]) – The latitude for the location, snapped to a grid
of approximately 500 ft. by 500 ft. Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	snapped_longitude (numeric / None [https://docs.python.org/3.7/library/constants.html#None]) – The longitude for the location, snapped to a grid
of approximately 500 ft. by 500 ft. Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	property_page_link (str [https://docs.python.org/3.7/library/stdtypes.html#str] / None [https://docs.python.org/3.7/library/constants.html#None]) – The URL to the walkscore.com map and score for
the location. Defaults to None [https://docs.python.org/3.7/library/constants.html#None].

	
classmethod from_dict(obj, api_compatible=False)

	Create a LocationScore instance from a
dict [https://docs.python.org/3.7/library/stdtypes.html#dict] representation.

	Parameters

	
	obj (dict [https://docs.python.org/3.7/library/stdtypes.html#dict]) – The dict [https://docs.python.org/3.7/library/stdtypes.html#dict] representation of the location
score.

	api_compatible (bool [https://docs.python.org/3.7/library/functions.html#bool]) – If True, expects obj to be a
dict [https://docs.python.org/3.7/library/stdtypes.html#dict] whose structure is compatible with the
JSON object returned by the WalkScore API. If False, expects a
slightly more normalized dict [https://docs.python.org/3.7/library/stdtypes.html#dict] representation.
Defaults to False.

	Returns

	LocationScore representation of obj.

	Return type

	LocationScore

	
classmethod from_json(obj, api_compatible=False)

	Create a LocationScore instance from a JSON representation.

	Parameters

	
	obj (str [https://docs.python.org/3.7/library/stdtypes.html#str] or bytes [https://docs.python.org/3.7/library/stdtypes.html#bytes]) – The JSON representation of the location score.

	api_compatible (bool [https://docs.python.org/3.7/library/functions.html#bool]) – If True, expects obj to be a JSON object
whose structure is compatible with the JSON object returned by the
WalkScore API. If False, expects a slightly more normalized
representation. Defaults to False.

	Returns

	LocationScore representation of obj.

	Return type

	LocationScore

	
to_dict(api_compatible=False)

	Serialize the LocationScore to a dict [https://docs.python.org/3.7/library/stdtypes.html#dict].

	Parameters

	api_compatible (bool [https://docs.python.org/3.7/library/functions.html#bool]) – If True, returns a dict [https://docs.python.org/3.7/library/stdtypes.html#dict]
whose structure is compatible with the JSON object returned by the
WalkScore API. If False, returns a slightly more normalized
dict [https://docs.python.org/3.7/library/stdtypes.html#dict] representation. Defaults to False.

	Returns

	dict [https://docs.python.org/3.7/library/stdtypes.html#dict] representation of the object

	Return type

	dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	
to_json(api_compatible=False)

	Serialize the LocationScore to a JSON string.

	Parameters

	api_compatible (bool [https://docs.python.org/3.7/library/functions.html#bool]) – If True, returns a JSON object whose structure
is compatible with the JSON object returned by the
WalkScore API. If False, returns a slightly more normalized
structure. Defaults to False.

	Returns

	str [https://docs.python.org/3.7/library/stdtypes.html#str] representation of a JSON object

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property address

	The original address supplied for the LocationScore.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property bike_description

	A textual description of the location’s bike-ability.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property bike_score

	The TransitScore for the location, measuring bike-ability
on a scale from 0 to 100.

	Return type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
property help_link

	URL to the “How WalkScore Works” page.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property logo_url

	URL to the WalkScore logo.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property more_info_icon

	URL to the question mark icon to display next to the Score.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property more_info_link

	URL for the question mark displayed next to the Score to link to.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property original_coordinates

	The coordinates of the location as originally supplied.

	Return type

	tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple] of longitude and latitude as
float [https://docs.python.org/3.7/library/functions.html#float] values

	
property original_latitude

	The latitude of the location as originally supplied.

	Return type

	float [https://docs.python.org/3.7/library/functions.html#float]

	
property original_longitude

	The longitude of the location as originally supplied.

	Return type

	float [https://docs.python.org/3.7/library/functions.html#float]

	
property property_page_link

	URL to the walkscore.com score and map for the location.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property snapped_coordinates

	The coordinates of the location as returned by the API.

	Return type

	tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple] of longitude and latitude as
float [https://docs.python.org/3.7/library/functions.html#float] values

	
property snapped_latitude

	The latitude of the location as returned by the API.

	Return type

	float [https://docs.python.org/3.7/library/functions.html#float]

	
property snapped_longitude

	The longitude of the location as returned by the API.

	Return type

	float [https://docs.python.org/3.7/library/functions.html#float]

	
property status

	Status Code of the result.

	Return type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
property transit_description

	A textual description of the location’s ease-of-transit.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property transit_score

	The TransitScore for the location, measuring ease-of-transit
on a scale from 0 to 100.

	Return type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
property transit_summary

	A textual summary of the location’s ease-of-transit.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property walk_description

	A textual description of the location’s walkability.

	Return type

	str [https://docs.python.org/3.7/library/stdtypes.html#str]

	
property walk_score

	The WalkScore for the location, measuring walkability on a
scale from 0 to 100.

	Return type

	int [https://docs.python.org/3.7/library/functions.html#int]

	
property walk_updated

	The timestamp for when the location’s WalkScore was last
updated.

	Return type

	datetime [https://docs.python.org/3.7/library/datetime.html#datetime.datetime]

HTTPClient

	
class HTTPClient(verify_ssl_certs=True, proxy=None)

	Base class that provides HTTP connectivity.

	
close()

	Closes an existing HTTP connection/session.

	
request(method, url, parameters=None, headers=None, request_body=None)

	Execute a standard HTTP request.

	Parameters

	
	method (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The HTTP method to use for the request. Accepts GET, HEAD,
POST, PATCH, PUT, or DELETE.

	url (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The URL to execute the request against.

	parameters (dict [https://docs.python.org/3.7/library/stdtypes.html#dict] / None [https://docs.python.org/3.7/library/constants.html#None]) – URL parameters to submit with the request. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

	headers (dict [https://docs.python.org/3.7/library/stdtypes.html#dict] / None [https://docs.python.org/3.7/library/constants.html#None]) – HTTP headers to submit with the request. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

	request_body (None [https://docs.python.org/3.7/library/constants.html#None] / dict [https://docs.python.org/3.7/library/stdtypes.html#dict] /
str [https://docs.python.org/3.7/library/stdtypes.html#str] / bytes [https://docs.python.org/3.7/library/stdtypes.html#bytes]) – The data to supply in the body of the request. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

	Returns

	The content of the HTTP response, the status code of the HTTP response,
and the headers of the HTTP response.

	Return type

	tuple [https://docs.python.org/3.7/library/stdtypes.html#tuple] of bytes [https://docs.python.org/3.7/library/stdtypes.html#bytes],
int [https://docs.python.org/3.7/library/functions.html#int], and dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	Raises

	
	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – if method is not either GET, HEAD, POST,
PATCH, PUT or DELETE

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – if url is not a valid URL

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – if headers is not empty and is not a
dict [https://docs.python.org/3.7/library/stdtypes.html#dict]

	HTTPTimeoutError – if the request times out

	SSLError – if the request fails SSL certificate verification

	WalkScoreError – or sub-classes for other errors returned by the API

	
request_with_retries(method, url, parameters=None, headers=None, request_body=None)

	Execute a standard HTTP request with automatic retries on failure.

	Parameters

	
	method (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The HTTP method to use for the request. Accepts GET, HEAD,
POST, PATCH, PUT, or DELETE.

	url (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – The URL to execute the request against.

	parameters (dict [https://docs.python.org/3.7/library/stdtypes.html#dict] / None [https://docs.python.org/3.7/library/constants.html#None]) – URL parameters to submit with the request. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

	headers (dict [https://docs.python.org/3.7/library/stdtypes.html#dict] / None [https://docs.python.org/3.7/library/constants.html#None]) – HTTP headers to submit with the request. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

	request_body (None [https://docs.python.org/3.7/library/constants.html#None] / dict [https://docs.python.org/3.7/library/stdtypes.html#dict] /
str [https://docs.python.org/3.7/library/stdtypes.html#str] / bytes [https://docs.python.org/3.7/library/stdtypes.html#bytes]) – The data to supply in the body of the request. Defaults to
None [https://docs.python.org/3.7/library/constants.html#None].

Note

This method will apply an
exponential backoff strategy [https://en.wikipedia.org/wiki/Exponential_backoff]
to retry the API request if it times out. By default:

	requests that can be retried will be retried up to 3 times, but this can
be overridden by setting a BACKOFF_DEFAULT_TRIES environment variable with
the maximum number of attempts to make

	there is no maximum delay to wait before final failure, but this can be
overridden by setting a BACKOFF_DEFAULT_DELAY environment variable with
the maximum number of seconds to wait (across all attempts) before failing.

	Raises

	
	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – if method is not either GET, HEAD, POST,
PATCH, PUT or DELETE

	ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError] – if url is not a valid URL

	HTTPTimeoutError – if the request times out after repeated attempts

	SSLError – if the request fails SSL certificate verification

	WalkScoreError – or sub-classes for other errors returned by the API

Error Reference

	Handling Errors

	Stack Traces

	WalkScore Errors

	WalkScoreError (from ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError])

	AuthenticationError (from WalkScoreError)

	InternalAPIError (from WalkScoreError)

	BlockedIPError (from WalkScoreError)

	QuotaError (from WalkScoreError)

	ScoreInProgressError (from WalkScoreError)

	InvalidCoordinatesError (from WalkScoreError)

	BindingError (from WalkScoreError)

	HTTPConnectionError (from WalkScoreError)

	HTTPTimeoutError (from HTTPConnectionError)

	SSLError (from WalkScoreError)

Handling Errors

Stack Traces

Because WalkScore produces exceptions which inherit from the standard
library, it leverages the same API for handling stack trace information.
This means that it will be handled just like a normal exception in unit test
frameworks, logging solutions, and other tools that might need that information.

WalkScore Errors

WalkScoreError (from ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError])

	
class WalkScoreError

	Base error raised by WalkScore. Inherits from
ValueError [https://docs.python.org/3.7/library/exceptions.html#ValueError].

AuthenticationError (from WalkScoreError)

	
class AuthenticationError

	Error raised when attempting to retrieve a score with an invalid API key.

InternalAPIError (from WalkScoreError)

	
class InternalAPIError

	Internal error within the WalkScore API itself. Inherits from
WalkScoreError.

BlockedIPError (from WalkScoreError)

	
class BlockedIPError

	Error raised when attempting to retrieve a score from a blocked IP address.

QuotaError (from WalkScoreError)

	
class QuotaError

	Error raised when you have exceeded your daily quota.

ScoreInProgressError (from WalkScoreError)

	
class ScoreInProgressError

	Error raised when a score for the location supplied is being calculated
and is not yet available.

InvalidCoordinatesError (from WalkScoreError)

	
class InvalidCoordinatesError

	Error raised when the coordinates supplied for a location are invlaid.

BindingError (from WalkScoreError)

	
class BindingError

	Error produced when the WalkScore Library has an incorrect API
binding.

HTTPConnectionError (from WalkScoreError)

	
class HTTPConnectionError

	Error produced when the WalkScore Library is unable to connect to the API, but
did not time out.

HTTPTimeoutError (from HTTPConnectionError)

	
class HTTPTimeoutError

	Error produced when the API times out or returns a Status Code: 504.

This error indicates that the underlying API timed out and did not return a result.

SSLError (from WalkScoreError)

	
class SSLError

	Error produced when an SSL certificate cannot be verified, returns a
Status Code: 495.

Contributing to WalkScore

Note

As a general rule of thumb, the WalkScore library applies PEP 8 [https://www.python.org/dev/peps/pep-0008]
styling, with some important differences.

	Branch

	Unit Tests

	latest [https://github.com/insightindustry/walkscore-api/tree/master]

	[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=latest]

	v.1.0 [https://github.com/insightindustry/walkscore-api/tree/v.1.0.1]

	[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=v.1.0.1]

	develop [https://github.com/insightindustry/walkscore-api/tree/develop]

	[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=develop]

What makes an API idiomatic?

One of my favorite ways of thinking about idiomatic design comes from a talk
given by Luciano Ramalho at Pycon 2016 [https://www.youtube.com/watch?v=k55d3ZUF3ZQ] 5 where he listed traits of a Pythonic
API as being:

	don’t force [the user] to write boilerplate code

	provide ready to use functions and objects

	don’t force [the user] to subclass unless there’s a very good reason

	include the batteries: make easy tasks easy

	are simple to use but not simplistic: make hard tasks possible

	leverage the Python data model to:

	provide objects that behave as you expect

	avoid boilerplate through introspection (reflection) and metaprogramming.

Contents:

	Design Philosophy

	Style Guide

	Basic Conventions

	Naming Conventions

	Design Conventions

	Documentation Conventions

	Sphinx

	Docstrings

	Dependencies

	Preparing Your Development Environment

	Ideas and Feature Requests

	Testing

	Submitting Pull Requests

	Building Documentation

	References

Design Philosophy

WalkScore is meant to be a “beautiful” and “usable” library. That means
that it should offer an idiomatic API that:

	works out of the box as intended,

	minimizes “bootstrapping” to produce meaningful output, and

	does not force users to understand how it does what it does.

In other words:

Users should simply be able to drive the car without looking at the engine.

Style Guide

Basic Conventions

	Do not terminate lines with semicolons.

	Line length should have a maximum of approximately 90 characters. If in doubt,
make a longer line or break the line between clear concepts.

	Each class should be contained in its own file.

	If a file runs longer than 2,000 lines…it should probably be refactored and
split.

	All imports should occur at the top of the file.

	Do not use single-line conditions:

GOOD
if x:
 do_something()

BAD
if x: do_something()

	When testing if an object has a value, be sure to use if x is None: or
if x is not None. Do not confuse this with if x: and if not x:.

	Use the if x: construction for testing truthiness, and if not x: for
testing falsiness. This is different from testing:

	if x is True:

	if x is False:

	if x is None:

	As of right now, because we feel that it negatively impacts readability and is
less-widely used in the community, we are not using type annotations.

Naming Conventions

	variable_name and not variableName or VariableName. Should be a
noun that describes what information is contained in the variable. If a bool,
preface with is_ or has_ or similar question-word that can be answered
with a yes-or-no.

	function_name and not function_name or functionName. Should be an
imperative that describes what the function does (e.g. get_next_page).

	CONSTANT_NAME and not constant_name or ConstantName.

	ClassName and not class_name or Class_Name.

Design Conventions

	Functions at the module level can only be aware of objects either at a higher
scope or singletons (which effectively have a higher scope).

	Functions and methods can use one positional argument (other than self
or cls) without a default value. Any other arguments must be keyword
arguments with default value given.

def do_some_function(argument):
 # rest of function...

def do_some_function(first_arg,
 second_arg = None,
 third_arg = True):
 # rest of function ...

	Functions and methods that accept values should start by validating their
input, throwing exceptions as appropriate.

	When defining a class, define all attributes in __init__.

	When defining a class, start by defining its attributes and methods as private
using a single-underscore prefix. Then, only once they’re implemented, decide
if they should be public.

	Don’t be afraid of the private attribute/public property/public setter pattern:

class SomeClass(object):
 def __init__(*args, **kwargs):
 self._private_attribute = None

 @property
 def private_attribute(self):
 # custom logic which may override the default return

 return self._private_attribute

 @setter.private_attribute
 def private_attribute(self, value):
 # custom logic that creates modified_value

 self._private_attribute = modified_value

	Separate a function or method’s final (or default) return from the rest of
the code with a blank line (except for single-line functions/methods).

Documentation Conventions

We are very big believers in documentation (maybe you can tell). To document
SQLAthanor we rely on several tools:

Sphinx [http://sphinx-doc.org] 1

Sphinx [http://sphinx-doc.org] 1 is used to organize the library’s documentation into this lovely
readable format (which is also published to ReadTheDocs [https://readthedocs.org] 2). This
documentation is written in reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html] 3 files which are stored in
<project>/docs.

Tip

As a general rule of thumb, we try to apply the ReadTheDocs [https://readthedocs.org] 2 own
Documentation Style Guide [http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html] 4 to our RST documentation.

Hint

To build the HTML documentation locally:

	In a terminal, navigate to <project>/docs.

	Execute make html.

When built locally, the HTML output of the documentation will be available at
./docs/_build/index.html.

Docstrings

	Docstrings are used to document the actual source code itself. When
writing docstrings we adhere to the conventions outlined in PEP 257 [https://www.python.org/dev/peps/pep-0257].

Dependencies

	Validator-Collection v1.3.0 [https://github.com/insightindustry/validator-collection] or higher

	Backoff-Utils v.1.0.0 [https://github.com/insightindustry/backoff-utils] or higher

Preparing Your Development Environment

In order to prepare your local development environment, you should:

	Fork the Git repository [https://github.com/insightindustry/walkscore-api].

	Clone your forked repository.

	Set up a virtual environment (optional).

	Install dependencies:

walkscore/ $ pip install -r requirements.txt

And you should be good to go!

Ideas and Feature Requests

Check for open issues [https://github.com/insightindustry/walkscore-api/issues]
or create a new issue to start a discussion around a bug or feature idea.

Testing

If you’ve added a new feature, we recommend you:

	create local unit tests to verify that your feature works as expected, and

	run local unit tests before you submit the pull request to make sure nothing
else got broken by accident.

See also

For more information about the WalkScore testing approach please
see: Testing WalkScore

Submitting Pull Requests

After you have made changes that you think are ready to be included in the main
library, submit a pull request on Github and one of our developers will review
your changes. If they’re ready (meaning they’re well documented, pass unit tests,
etc.) then they’ll be merged back into the main repository and slated for inclusion
in the next release.

Building Documentation

In order to build documentation locally, you can do so from the command line using:

walkscore-api/ $ cd docs
walkscore-api/docs $ make html

When the build process has finished, the HTML documentation will be locally
available at:

walkscore/docs/_build/html/index.html

Note

Built documentation (the HTML) is not included in the project’s Git
repository. If you need local documentation, you’ll need to build it.

References

	1(1,2)

	http://sphinx-doc.org

	2(1,2)

	https://readthedocs.org

	3

	http://www.sphinx-doc.org/en/stable/rest.html

	4

	http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

	5

	https://www.youtube.com/watch?v=k55d3ZUF3ZQ

Testing WalkScore

Contents

	Testing WalkScore

	Testing Philosophy

	Test Organization

	Configuring & Running Tests

	Installing with the Test Suite

	Command-line Options

	Configuration File

	Running Tests

	Skipping Tests

	Incremental Tests

Testing Philosophy

Note

Unit tests for WalkScore are written using pytest [https://docs.pytest.org/en/latest/] 1 and
a comprehensive set of test automation are provided by tox [https://tox.readthedocs.io] 2.

There are many schools of thought when it comes to test design. When building
WalkScore, we decided to focus on practicality. That means:

	DRY is good, KISS is better. To avoid repetition, our test suite makes
extensive use of fixtures, parametrization, and decorator-driven behavior.
This minimizes the number of test functions that are nearly-identical.
However, there are certain elements of code that are repeated in almost all test
functions, as doing so will make future readability and maintenance of the
test suite easier.

	Coverage matters…kind of. We have documented the primary intended
behavior of every function in the WalkScore library, and the
most-likely failure modes that can be expected. At the time of writing, we
have about 85% code coverage. Yes, yes: We know that is less than 100%. But
there are edge cases which are almost impossible to bring about, based on
confluences of factors in the wide world. Our goal is to test the key
functionality, and as bugs are uncovered to add to the test functions as
necessary.

Test Organization

Each individual test module (e.g. test_get_score.py) corresponds to a
conceptual grouping of functionality. For example:

	test_locationscore.py tests the LocationScore class found in
walkscore/locationscore.py

Certain test modules are tightly coupled, as the behavior in one test module may
have implications on the execution of tests in another. These test modules use
a numbering convention to ensure that they are executed in their required order,
so that test_1_NAME.py is always executed before
test_2_NAME.py.

Configuring & Running Tests

Installing with the Test Suite

Installing via pip

$ pip install walkscore-api[tests]

From Local Development Environment

See also

When you
create a local development environment,
all dependencies for running and extending the test suite are installed.

Command-line Options

WalkScore does not use any custom command-line options in its
test suite.

Tip

For a full list of the CLI options, including the defaults available, try:

walkscore-api $ cd tests/
walkscore-api/tests/ $ pytest --help

Configuration File

Because WalkScore has a very simple test suite, we have not
prepared a pytest.ini configuration file.

Running Tests

Entire Test Suite

tests/ $ pytest

Test Module

tests/ $ pytest tests/test_module.py

Test Function

tests/ $ pytest tests/test_module.py -k 'test_my_test_function'

Skipping Tests

Note

Because of the simplicity of WalkScore, the test suite does
not currently support any test skipping.

Incremental Tests

Note

The WalkScore test suite does support incremental testing,
however at the moment none of the tests designed rely on this functionality.

A variety of test functions are designed to test related functionality. As a
result, they are designed to execute incrementally. In order to execute tests
incrementally, they need to be defined as methods within a class that you decorate
with the @pytest.mark.incremental decorator as shown below:

@pytest.mark.incremental
class TestIncremental(object):
 def test_function1(self):
 pass
 def test_modification(self):
 assert 0
 def test_modification2(self):
 pass

This class will execute the TestIncremental.test_function1() test, execute and
fail on the TestIncremental.test_modification() test, and automatically fail
TestIncremental.test_modification2() because of the .test_modification()
failure.

To pass state between incremental tests, add a state argument to their method
definitions. For example:

@pytest.mark.incremental
class TestIncremental(object):
 def test_function(self, state):
 state.is_logged_in = True
 assert state.is_logged_in = True
 def test_modification1(self, state):
 assert state.is_logged_in is True
 state.is_logged_in = False
 assert state.is_logged_in is False
 def test_modification2(self, state):
 assert state.is_logged_in is True

Given the example above, the third test (test_modification2) will fail because
test_modification updated the value of state.is_logged_in.

Note

state is instantiated at the level of the entire test session (one run of
the test suite). As a result, it can be affected by tests in other test modules.

	1

	https://docs.pytest.org/en/latest/

	2

	https://tox.readthedocs.io

Release History

Contents

	Release History

	Release v.1.0.1

	Release v.1.0.0

Release v.1.0.1

[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore-api][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore-api][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=v.1.0.1]
	Fixed false negative in unit tests.

	Fixed TravisCI configuration in Python 3.6 / PyCURL environment.

	Added Python 3.8 to test matrix.

Release v.1.0.0

[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore-api][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore-api][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=v.1.0.0]
	First public release

Glossary

	WalkScore
	Measures walkability on a scale from 0 - 100 based on walking routes to
destinations such as grocery stores, schools, parks, restaurants, and retail.

	TransitScore
	Measures transit accessibility on a scale from 0 - 100. Calculates distance to
closest stop on each route, analyzes route frequency and type.

	BikeScore
	Measures bike accessibility on a scale from 0 - 100 based on bike
infrastructure, topography, destinations and road connectivity.

	JSON
	A lightweight data-interchange format that has become the de facto standard
for communication across internet-enabled APIs.

For a formal definition, please see the
ECMA-404 Standard: JSON Data Interchange Syntax [http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf]

WalkScore API License

MIT License

Copyright (c) 2019 Insight Industry Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 t |
 w

 		 	

 		
 t	

 	
 	
 tests	

 		 	

 		
 w	

 	[image: -]
 	
 walkscore	

 	
 	
 walkscore.api	

 	
 	
 walkscore.errors	

 	
 	
 walkscore.http_client	

 	
 	
 walkscore.locationscore	

Index

 A
 | B
 | C
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | W

A

 	
 	address() (LocationScore property)

 	
 	api_key() (WalkScoreAPI property)

 	AuthenticationError (class in walkscore.errors)

B

 	
 	bike_description() (LocationScore property)

 	bike_score() (LocationScore property)

 	
 	BikeScore

 	BindingError (class in walkscore.errors)

 	BlockedIPError (class in walkscore.errors)

C

 	
 	close() (HTTPClient method)

F

 	
 	from_dict() (LocationScore class method)

 	
 	from_json() (LocationScore class method)

G

 	
 	get_score() (WalkScoreAPI method)

H

 	
 	help_link() (LocationScore property)

 	http_client() (WalkScoreAPI property)

 	
 	HTTPClient (class in walkscore.http_client)

 	HTTPConnectionError (class in walkscore.errors)

 	HTTPTimeoutError (class in walkscore.errors)

I

 	
 	InternalAPIError (class in walkscore.errors)

 	
 	InvalidCoordinatesError (class in walkscore.errors)

J

 	
 	JSON

L

 	
 	LocationScore (class in walkscore.locationscore)

 	
 	logo_url() (LocationScore property)

M

 	
 	max_retries() (WalkScoreAPI property)

 	
 	more_info_icon() (LocationScore property)

 	more_info_link() (LocationScore property)

O

 	
 	original_coordinates() (LocationScore property)

 	
 	original_latitude() (LocationScore property)

 	original_longitude() (LocationScore property)

P

 	
 	property_page_link() (LocationScore property)

 	proxy() (WalkScoreAPI property)

 	
 	
 Python Enhancement Proposals

 	PEP 257

 	PEP 8

Q

 	
 	QuotaError (class in walkscore.errors)

R

 	
 	request() (HTTPClient method)

 	
 	request_with_retries() (HTTPClient method)

S

 	
 	ScoreInProgressError (class in walkscore.errors)

 	snapped_coordinates() (LocationScore property)

 	snapped_latitude() (LocationScore property)

 	
 	snapped_longitude() (LocationScore property)

 	SSLError (class in walkscore.errors)

 	status() (LocationScore property)

T

 	
 	tests (module)

 	to_dict() (LocationScore method)

 	to_json() (LocationScore method)

 	
 	transit_description() (LocationScore property)

 	transit_score() (LocationScore property)

 	transit_summary() (LocationScore property)

 	TransitScore

W

 	
 	walk_description() (LocationScore property)

 	walk_score() (LocationScore property)

 	walk_updated() (LocationScore property)

 	WalkScore

 	walkscore.api (module)

 	
 	walkscore.errors (module)

 	walkscore.http_client (module)

 	walkscore.locationscore (module)

 	WalkScoreAPI (class in walkscore.api)

 	WalkScoreError (class in walkscore.errors)

	Validator-Collection v1.3.0 [https://github.com/insightindustry/validator-collection] or higher

	Backoff-Utils v.1.0.0 [https://github.com/insightindustry/backoff-utils] or higher

 To install WalkScore, just execute:

$ pip install walkscore-api

	Branch

	Unit Tests

	latest [https://github.com/insightindustry/walkscore-api/tree/master]

	[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=latest]

	v.1.0 [https://github.com/insightindustry/walkscore-api/tree/v.1.0.1]

	[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=v.1.0.1]

	develop [https://github.com/insightindustry/walkscore-api/tree/develop]

	[image: Build Status (Travis CI)]
 [https://travis-ci.org/insightindustry/walkscore][image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/insightindustry/walkscore][image: Documentation Status (ReadTheDocs)]
 [http://walkscore-api.readthedocs.io/en/latest/?badge=develop]

 nav.xhtml

 Table of Contents

 		
 The WalkScore Library

_static/minus.png

_static/plus.png

_static/file.png

